
HP 66000 Modular Power System

Product Note

Using the New List and

Trigger Capabilities to

Sequence Outputs in

These Applications:

Sequencing Multiple Modules
During Power Up
Sequencing Multiple Modules to
Power Down on Event
Controlling Output Voltage Ramp
Up at Turn On
Providing Time-Varying Voltages
Providing Time-Varying Current
Limiting
Output Sequencing Paced by the
Computer
Output Sequencing Without
Computer Intervention

This literature was published years prior to the establishment of Agilent Technologies as a company independent from Hewlett-Packard

and describes products or services now available through Agilent. It may also refer to products/services no longer supported by Agilent.

We regret any inconvenience caused by obsolete information. For the latest information on Agilent’s test and measurement products go to:

w w w. a g i l e n t . c o m / f i n d / p r o d u c t s

Or in the US, call Agilent Technologies at 1-800-452-4844 (8am–8pm EST)

This note provides information on
how you can use the advanced
programmable features of the
HP 66000 Modular Power System
to address a variety of
applications. Although your exact
application may not be described
here, the capabilities described
can be generalized and applied to
your specific needs. The
programming examples are given
in HP BASIC. However, the
appendix has listings translated
into languages available on
DOS-based computers.

These are the capabilities that are
discussed and a description of
how they can be applied:

1

1. Sequencing Multiple Modules During Power Up 10

When testing mixed signal devices, ±bias supply voltages are typically
applied before logic bias supply voltages. For a device that is sensitive
to when bias voltages are applied, the order of power-up of multiple
power modules can be controlled.

2. Sequencing Multiple Modules to Power Down on Event 14

When testing devices, such as some GaAs and ECL devices that are
sensitive to when bias voltages are removed, the order of power-down
of multiple power modules can be controlled. The power-down
sequence can be initiated by an event, such as a change in power
module status, fault condition, detection of a TTL signal, etc.

3. Controlling Output Voltage Ramp Up at Turn On 18

When control over the rate of voltage ramp-up at turn-on of the power
module output is required, the required shape can be approximated by
downloading and executing a series of voltage and dwell time points.

4. Providing Time-Varying Voltages . 22

To burn-in devices using thermal or mechanical cycling/stress, cyclical
time-varying voltage is provided by programming a set of voltage and
dwell time points that repetitively sequence over time.

5. Providing Time-Varying Current Limiting 26

To provide current limit protection which varies as a function of time,
multiple thresholds on current limit are required. Having multiple
thresholds can provide a high limit to protect the device under test
(DUT) during its power-up inrush with automatic switch-over to a lower
limit to protect the DUT during its steady state operation.

6. Output Sequencing Paced by the Computer 30

When performing bias supply margin testing, throughput can be
maximized by eliminating command processing time associated with
reprogramming all outputs for each set of limit conditions. Instead,
multiple sets of bias limit conditions can be downloaded to the power
modules during test system initialization. During the testing, the
computer can use a single command to simultaneously signal all power
modules to step through each test condition.

7. Output Sequencing Without Computer Intervention 34

When characterizing devices, the DUT's performance is measured over
a range of power supply voltages. This test can be performed without
computer intervention by using hardware signals from the measurement
instrument to cause the power module to sequence to the next voltage
in a preprogrammed List. By buffering these readings in the
measurement instrument, the entire test can be executed without
computer involvement. For characterizations that require long
measurement times, the computer is free to do other tasks. For
characterizations that must execute at hardware speeds, the computer
is not involved and will not slow down the test loop.

Introduction

The HP 66000 Modular Power
System (MPS) is a member of the
Hewlett-Packard "One-Box"
Solution family of power supplies.
The "One-Box" family is the next
generation of power supplies and
offers many advantages over other
power supply solutions.

The MPS consists of the
HP 66000A Modular Power
Mainframe and a number of
different HP 66100A series dc
power modules. Each MPS dc
power module contains a dc
power supply with automatic
CV/CC crossover, voltage and
current programmers, a DMM
with precision current shunt, and
a digital interface. This allows you
to directly program voltage and

current, read back the actual
measured voltage and current, and
monitor the status conditions of
the power module. Each module
is optimized for ATE applications
and offers all the built-in features
needed for easy integration into
your test system.

The MPS dc power modules
feature a SCPI (Standard
Commands for Programmable
Instruments) command set. This
industry standard command set
simplifies test system develop-
ment by offering command set
commonality between all types of
instrumentation so that all
instruments performing the same
function use the same self-
documenting SCPI instructions.

For example, measuring the actual
output voltage from a dc power
module and reading the voltage
from an external multimeter use
the same SCPI commands.
Because you spend less time
learning device commands, you
can get your application up and
running faster.

The following sections of this note
explain how to get the most from
the advanced programming
features of the MPS dc power
modules. These explanations are
followed by seven practical
example applications that show
how to apply these advanced
features.

2

Introduction to the HP 66000 Modular Power System

HP 66000 MPS Triggering

How Can I benefit from

Triggers?

With most system power supplies,
the only way to make it perform
some action is to send it a
command over HP-IB. Upon
receipt of that command, the
power supply processed the
command and executes the
action. This can cause two
problems:

1. When many commands must be
processed, the combined
command processing time can
slow down test execution.

2. When multiple power supplies
must be programmed to act in
unison, the command processing
time can cause the resultant
outputs to occur out of
synchronization.

The MPS dc power modules offer
a solution to these problems by
providing the ability to send and
receive triggers. With triggers, the
new voltage and current levels are
sent to the power module before
they are needed so that they can
be preprocessed. When you want
to change the output, you send a
trigger and the module
immediately changes its output to
the new programmed settings,
without command processing
delays. You no longer need to
explicitly program the voltage and
current each time you needed to
change the output setting.

Triggers can be used when you
require multiple bias modules to
act in unison (for example, to
apply power from three modules
to the DUT simultaneously).
Instead of separately
programming the voltage and
current settings for each of the
three modules (and having them
reach their voltage settings at
different times), you can
preprogram the modules to the
required correct output. You can
then trigger all three at once and
they will reach their desired
outputs together.

In addition to responding to
triggers, the power module can
provide a Trigger Out signal. This
signal can be used to notify other
hardware in your test system that
the power module has changed its
output. For example, Trigger Out
can be connected to the Trigger In
of a digital oscilloscope to request
it to begin making a measurement
on the DUT. With this method of
synchronization, a measurement
is valid because it is triggered as
soon as the power module reaches
its programmed voltage but not
before it has had time to do so.
This method also maximizes
throughput because the
measurement begins as soon as
the module reaches its required
output voltage.

What Actions Can I Trigger?

The MPS dc power modules
support triggering of any of the
following, called "trigger actions":

a change in output voltage
a change in output current
a start of a List sequence
(see next section)
the pace of a List sequence
(see next section)

The MPS dc power modules also
have a programmable trigger
delay. This allows you to insert a
time interval between the time a
trigger is detected by the module
and the time the trigger action
occurs.

From Where Do I Receive

Triggers?

The MPS dc power modules can
receive triggers from the following
trigger sources:

The HP-IB. The computer can
send trigger commands to the
modules. There is a short
command processing time
associated with this source.

External Trigger In. This is the
MPS mainframe TRIGGER IN
connector. It is a BNC connector
wired to a backplane bus that
provides a trigger input common
to all modules.

TRIGGER IN accepts TTL levels,
with the falling edge detected as
the trigger.

Status Conditions. A change in a
module's status can be used to
generate a trigger. For example,
you can use the constant current
status condition to trigger the
module to change its output
voltage.

TTL Trigger. The TTL Trigger
bus is a backplane bus that can be
used as a trigger input by any
module. (See next section for how
to drive the backplane TTL
Trigger bus.)

3

Figure 1. MPS Trigger Sources

How Do I Generate Triggers?

Any module can be programmed
to drive the backplane TTL
Trigger bus. By means of this bus,
a module can trigger all other
modules that have been
programmed to respond to the
TTL Trigger bus as their trigger
source (see the preceding
paragraph).

The TTL Trigger bus is wired to
the MPS mainframe TRIGGER
OUT BNC connector. The
TRIGGER OUT signal is a
20-microsecond, negative-true
TTL pulse. Whenever a module
drives the backplane TTL Trigger
bus, it also drives the TRIGGER
OUT connector on the MPS
mainframe.

The MPS dc power modules can
drive the TTL Trigger line in
response to:

The HP-IB. When the computer
sends a trigger command to a
module, it can drive the TTL
Trigger bus. This permits you to
trigger one module from the
computer and have that module
"echo" the trigger command over
the TTL Trigger bus, simultan-
eously triggering all other
modules.

External Trigger In. A module
can drive the TTL Trigger bus in
response to a trigger received
from the mainframe TRIGGER IN
connector.

Status Conditions. A change in a
module's status can be used to
drive the TTL Trigger bus. This
allows a change in status in one
module to trigger other modules.
For example, you can use a
current limit condition in one
module to trigger the other
modules to perform a trigger
action.

How Do I Enable the MPS to

Respond to Triggers?

The default state of the dc power
module is the idle state, where
trigger detection is disabled.
Before it can respond to a trigger,
the module must be placed in the
"initiated" state (by a computer
command). Once initiated, the

module can detect a trigger from
the selected source. This is the
only time when the module
responds to a trigger; no trigger
detection occurs in the idle state
(above) or in the "triggered" state
(next paragraph).

Once the trigger is detected, the
module moves into a triggered
state and performs the trigger
action (after waiting any
programmed trigger delay time).
Upon completion of the trigger
action, the module returns to the
idle state.

4

Figure 2. Generating TTL Triggers

What is a List and How Can I

Benefit from its Use?

Normally, an MPS dc power
module operates in a mode called
"Fixed", where the output settings
stay fixed at the programmed
value until you send another
command to change them.
Another available mode is called
"List" mode, where no computer
commands are needed to alter the
output settings.

Lists allow you to download a
sequence of voltage and/or current
values that will be generated at
specific intervals or on the
occurrence of a trigger. Up to 20
voltage and current values
(points), with 20 associated dwell
times, can be programmed. Once
downloaded, the dc power module
can execute the sequence of
output settings with minimal
interaction between the computer
and the dc power module. By
pacing a List using the
programmable dwell times, you
can time output changes more
precisely. By pacing a List using
triggers, you can better
synchronize changes in the output
with asynchronous events.

Can a List be Repeated?

Although each List can contain up
to 20 points, a List can be
programmed to repeat. The
number of repetitions, called the
List count, is programmable from
1 to 65534 loops. It can also be set
to repeat continuously by making
the count infinite.

How Do I Execute a List?

If you want the voltage to change
per a downloaded List, set the
voltage mode to List. Similarly, if
you want the current to change
per a downloaded List, set the
current mode to List. If you want
both to change, set both to List
mode.

A module begins executing a List
in response to a trigger. All of the
trigger sources mentioned under
"HP 66000 MPS Triggering" are
valid. Once triggered, Lists can be
paced by dwell times or paced by
triggers.

Dwell-Paced Lists

When the List is dwell paced, each
List point is programmed for the
dwell time associated with that
point. When the dwell time
expires, the output changes to the
next point in the List.

Valid dwell times for the MPS dc
power modules are from 10
milliseconds to 65 seconds per
point. The resolution is in
2-millisecond increments. The
command to select dwell-paced
List mode is LIST:STEP AUTO.
This commands the List to step
automatically to the next point
after expiration of the dwell time.
If the List count is greater than 1,
the List will automatically repeat
until the count has been satisfied.
With dwell pacing, the execution
of the entire List is the triggered
action, so only one trigger is
required.

The following diagram shows the
timing for the start trigger, status
conditions, and output voltage
changes for a dwell paced List.
The programmed parameters are:

List points: 5 V for 50 ms
10 V for 150 ms
0 V for 30 ms

Trigger delay: 20 ms

5

HP 66000 MPS Lists

Figure 3. Timing Diagram for Dwell-Paced Lists

Triggering Each Point in a List

When the List is paced by triggers,
each List point is generated when
a trigger is detected. When the
dwell time expires, the output
stays at the same value until the
next trigger is detected. Thus, one
trigger is required to sequence the
List from each point to the next.
Any triggers received during a
point's dwell time are ignored.
The command to select
trigger-paced List mode is
LIST:STEP ONCE. This
commands the List to execute
only one List point (step) upon
receipt of each trigger.

Note that since the module
ignores triggers during the dwell
time, you must be careful not to
program a dwell time that is so
long that you will miss the next
trigger. If you are unsure of when
triggers will be sent and you want
to guarantee that you get all of
them, set the dwell time to its
minimum value.

The following diagram shows the
timing for triggers, status
conditions, and output voltage
changes for a trigger paced List.
The programmed parameters are:

List points: 5 V for 50 ms
10 V for 150 ms
0 V for 30 ms

Trigger delay: 20 ms

6

Figure 4. Timing Diagram for Trigger-Paced Lists

This section describes how to
make several modules respond
synchronously. The general
concepts described here provide
the basis for many synchronized
multiple-output applications.

Each MPS dc power module
functions independently. To get
them to operate in unison, a
common synchronizer must be
established. This can be done by
having a single trigger source or
timebase for all modules.

For example, to sequence 3
modules to power up 50 ms apart,
you could use the three simple
Lists in the table below:

As you can see, although each
module functions independently
from the other, the result is a
sequenced output. This simple
method has two problems if tight
synchronization is needed:

How do you get three Lists to start
simultaneously?
How do you guarantee that the
dwell time clocks in all modules
stay synchronized?

The following sections describe
how the MPS solves the problems
of synchronization.

HP-IB Triggering Between

Modules

Sometimes a common trigger
signal is not available. For
example, when it sends a trigger
command, the computer cannot
talk to all devices on the HP-IB
simultaneously. The time required
to individually trigger each dc
power module could cause an
undesirable "skewing" of the
trigger actions.

You can use the backplane TTL
Trigger bus of the mainframe to
solve the lack of a common
trigger. The procedure is as
follows: Program the first module
to generate a backplane TTL
Trigger when it receives a trigger
command over HP-IB. Then,
command all other modules to use
the backplane TTL Trigger bus as
a source. The computer then
triggers only the first module,
which "echos" that trigger over the
backplane to all other modules
simultaneously.

Status Triggering Between

Modules

Some applications require a
trigger to occur in response to a
change in status within a module.
Since change-of-status detection is
internal to each module, one
module is unaware of, and
therefore cannot react to, status
changes within another module.
Using the mainframe backplane
TTL Trigger bus solves this. The
module that detects a status
change can be programmed to not
only trigger itself to perform some
trigger action, but also to send a
TTL Trigger out on the backplane
bus. This triggers all the other
modules.

7

Using Triggers with Lists to Implement Output Sequences

module #1 module #2 module #3

step no. voltage
list

dwell
time

voltage
list

dwell
time

voltage
list

dwell
time

1 5 V 50 ms 0 V 50 ms 5 V 50 ms

2 5 V 50 ms 5 V 50 ms 0 V 50 ms

3 5 V 50 ms 5 V 50 ms 5 V 50 ms

A Generalized Synchronizing

Scheme

It is desirable to simultaneously
start and then maintain
synchronization between Lists
running in multiple modules . You
can use a combination of HP-IB
and status triggering to
synchronize several Lists. Use the
following approach:

For Module 1...

Trigger the module from a
computer trigger command over
HP-IB
Generate the output voltage from
a List
Use a dwell-paced List. The
computer trigger command causes
the execution of the entire List.
Have the module generate a
backplane TTL Trigger at the start
of each point (step) in the List.
This can be done by triggering on
the STS (Step Started) status
condition.

For Modules 2 and 3...

Trigger the module from the
backplane TTL Trigger bus
Generate the output voltage from
a List
Use a trigger-paced List. Each
backplane TTL Triggers causes
the execution of one point of the
List.
Program the dwell times to
minimum (so you don't miss any
triggers)

When the computer sends the
trigger command to module 1, it
will begin executing its List.
Module 1 will step through its List
of points, generating a TTL
Trigger each time the Step Started
(STS) condition occurs at the start
of each new point. Modules 2, 3...
will wait for these triggers before
proceeding to their next point.
The result is an "unskewed"
synchronized output, started by a
single computer command.

8

Figure 5. Timing Diagram for the Generalized Synchronizing Scheme

This section contains seven
example applications. For each
application, there is:

An overview of the application
Which MPS features are used to
implement the application
The advantages and benefits of
the MPS solution
The details of the implementation
of the solution
A block diagram of the setup
A sample program listing in
HP BASIC
A description of variations on the
application

9

Applications

The following table lists what MPS features are used in each of the
applications. It can be used as an index into this section.

Application 1. Sequencing Multiple Modules During Power Up
Application 2. Sequencing Multiple Modules to Power Down on Event
Application 3. Controlling Output Voltage Ramp Up at Turn On
Application 4. Providing Time-Varying Voltages
Application 5. Providing Time-Varying Current Limiting
Application 6. Output Sequencing Paced by the Computer
Application 7. Output Sequencing Without Computer Intervention

Application

1 2 3 4 5 6 7

Lists

20-point current List •

20-point voltage List • • • •

Repetitive Lists •

Dwell time • • • •

List Pacing

Dwell-paced Lists • • •

Trigger-paced Lists • •

Actions due to a change

in status

Generate an SRQ • •

Generate a trigger • •

Disable the output • •

Stop the List • •

Triggers

Change the voltage on trigger • • •

Trigger in/out from MPS backplane
TTL Trigger

• • • •

Trigger on an HP-IB trigger command • • • • •

Trigger delay • •

Other Features

Active downprogramming • • •

Overcurrent protection • •

When testing mixed signal devices, ± bias supply voltages are typically
applied before logic bias supply voltages. For a device that is sensitive to
when bias voltages are applied, the order of power up of multiple power
modules can be controlled.

For this example, the device requires three bias supplies, + 5 V for the
logic circuits and ± 15 V for amplifier circuits. To properly power up the
device, the supplies must be sequenced so that the ± 15 V are applied first
and the + 5 V is applied 50 ms later.

The MPS can easily address this application through the use of triggers.
The trigger will cause the modules to change from 0 V, where they are not
powering the DUT, to their final voltage. By delaying the response to the
trigger, you can control when the module's output voltage changes. This
means you can control the sequence of the modules during power up.

Change the voltage on trigger
Trigger in/out from MPS mainframe backplane TTL Trigger
Trigger on an HP-IB trigger command Trigger delay
Trigger delay

By using trigger delay, the timing is accurate and repeatable.
The sequence is simpler to program (no timing loops).
The computer is not devoted to sequencing power modules.
The computer does not provide timing for the sequence.
One command initiates the sequence.

How the MPS implements the sequence

The computer sends a trigger command to the first module.
The first module simultaneously sends a backplane trigger to other two
modules and goes to + 15 V.
The second module receives the backplane TTL Trigger and immediately
goes to -15 V.
The third module receives the backplane TTL Trigger, delays 50 ms, and
then goes to + 5 V.

MPS set up Module in slot 0:

The module is connected to + 15 V on the DUT.
The initial voltage setting is 0 V.
The module listens for the computer to send a trigger command.
Upon receipt of the trigger command, the module goes to 15 V.
Also upon receipt of the trigger command, the module generates a
backplane TTL Trigger.

Module in slot 1:

The module is connected to -15 V on the DUT.
The initial voltage setting is 0 V.
The module listens for a backplane TTL Trigger.
Upon receipt of the trigger, the module goes to 15 V.

Overview of application

MPS features used

Advantages/benefits of the

MPS solution

Implementation details

10

Application 1.

Sequencing Multiple Modules during Power Up

Module in slot 2:

The module is connected to + 5 V on the DUT.
The initial voltage setting is 0V.
The module listens for a backplane TTL Trigger.
The trigger delay is programmed to 50 ms.
Upon receipt of the trigger, the module waits the trigger delay time and
then goes to 5 V.

1. The modules could be set to generate SRQ when the last module (+ 5 V)
reaches its final output value. This would notify the computer that power
has been applied to the DUT and the testing can begin.

2. To provide a delay between the application of the + 15 V and the -15 V
bias, you can program different trigger delays into modules 2 and 3. The
delay time will be relative to module in slot 0.

3. To get all three modules to apply power to the DUT at the same time,
simply eliminate the trigger delay on the + 5 V module.

4. When modules need to be connected in parallel to increase current, they
will also need to be synchronized so that they all apply power
simultaneously. To get modules in parallel to apply power at the same
time, use the approach described in this example, but eliminate any trigger
delays.

Variations on this

implementation

11

Figure 1-1. Block Diagram of Application #1

Figure 1-2. Timing Diagram of Application #1

12

10 ! APPLICATION #1: SEQUENCING MULTIPLE MODULES DURING POWER UP
20 ! PROGRAM: APP_1
30 !
40 ASSIGN @Slot0 TO 70500 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
50 ASSIGN @Slot1 TO 70501 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 01
60 ASSIGN @Slot2 TO 70502 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 02
70 !
80 ! SET UP MODULE IN SLOT 0 AS +15 V BIAS SUPPLY ---------------------
90 !
100 OUTPUT @Slot0;”*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
110 OUTPUT @Slot0;"VOLT 0” ! START AT 0 V
120 OUTPUT @Slot0;"VOLT:TRIGGERED 15" ! GO TO 15 V ON TRIGGER
130 OUTPUT @Slot0;"TRIGGER:SOURCE BUS" ! TRIGGER SOURCE IS HP-IB 'BUS'
140 OUTPUT @Slot0;OUTPUT:TTLTRG:SOURCE BUS" ! GENERATE BACKPLANE TTL TRIGGER WHEN HP-IB 'BUS'

TRIGGER IS RECEIVED
150 OUTPUT @Slot0;"OUTPUT:TTLTRG:STATE ON" ! ENABLE BACKPLANE TTL TRIGGER DRIVE
160 OUTPUT @Slot0;"OUTPUT ON" ! ENABLE OUTPUT
170 OUTPUT @Slot0;"INITIATE" ! ENABLE RESPONSE TO TRIGGER
180 !
190 ! SET UP MODULE IN SLOT 1 AS -15 V BIAS SUPPLY ---------------------
200 !
210 OUTPUT @Slot1;”*RST;*CLS;STATUS:PRESET” ! RESET AND CLEAR MODULE
220 OUTPUT @Slot1;”VOLT 0" ! START AT 0 V
230 OUTPUT @Slot1;"VOLT:TRIGGERED 15" ! GO TO 15 V ON TRIGGER
240 OUTPUT @Slot1;"TRIGGER:SOURCE TTLTRG" ! TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
250 OUTPUT @Slot1;"OUTPUT ON" ! ENABLE OUTPUT
260 OUTPUT @Slot1;”INITIATE" ! ENABLE RESPONSE TO TRIGGER
270 !
280 ! SET UP MODULE IN SLOT 2 AS +5 V BIAS SUPPLY --------------------
290 !
300 OUTPUT @Slot2;”*RST;*CLS;STATUS:PRESET. ! RESET AND CLEAR MODULE
310 OUTPUT @Slot2;"VOLT 0" ! START AT 0 V
320 OUTPUT @Slot2;"VOLT:TRIGGERED 5" ! GO TO 5 V ON TRIGGER
330 OUTPUT @Slot2;"TRIGGER:SOURCE TTLTRG” ! TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
340 OUTPUT @Slot2; "TRIGGER :DELAY 0.050" ! 50 ms TRIGGER DELAY
350 OUTPUT @Slot2;"OUTPUT ON" ! ENABLE OUTPUT
360 OUTPUT @Slot2;”lNITIATE" ! ENABLE RESPONSE TO TRIGGER
370 !
380 ! BEFORE TRIGGERING THE NODULES, DETERMINE IF THE MODULES ARE READY BY CHECKING FOR
390 ! 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER). IF THE LAST NODULE PROGRAMMED
400 ! IS READY THEN SO ARE THE OTHERS, SO JUST CHECK SLOT 2.
410 !
420 ! YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
430 ! CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
440 ! THAT TAKE TIME WILL GIVE THE MODULES A CHANCE TO COMPLETE PROCESSING.
450 !
460 REPEAT
470 OUTPUT @Slot2; "STATUS :OPERATION: CONDITION?"
480 ENTER @Slot2;Condition_data
490 UNTIL BIT(Condition_data,5) ! TEST FOR BIT 5 = TRUE
500 !
510 ! TRIGGER MODULE IN SLOT 0 TO BEGIN SEQUENCING THE 3 NODULES TO POWER UP
520 !
530 OUTPUT @Slot0;"*TRG" ! SEND HP-IB 'BUS TRIGGER
540 !
550 END

Figure 1-3. HP BASIC Program Listing for Application #1

13

When testing devices, such as some GaAs and ECL devices that are
sensitive to when bias voltages are removed, the order of power-down of
multiple power modules can be controlled. The power-down sequence can
be initiated by an event, such as a change in power module status, fault
condition, detection of a TTL signal, etc.

For this example, there are three supplies + 5 V and ±15 V. (See previous
application for how to generate a power up sequence.) Once the power has
been applied to the DUT, the modules can be reprogrammed to perform
the power down sequence. The power down sequence is initiated when a
fault in the DUT draws excessive current from the power module, causing
the module to change from CV to CC. To prevent damage to the DUT, it is
necessary to remove the + 5 V first, then the ±15 V modules 15 ms later.

Once again, MPS triggering can solve the application. In this scenario, the
CV-to-CC crossover event will be used as the trigger source. The trigger
will cause the modules, in the correct order, to change from their
programmed voltages down to 0 V.

Generate a trigger on a change in internal status
Change the voltage on trigger
Trigger in/out from MPS mainframe backplane TTL Trigger
Trigger delay
Active downprogramming

By using the modules' change in status to automatically generate a trigger,
the computer is not devoted to polling the modules to detect a change in
state.
By letting each module monitor its status, the CC condition will generate a
response faster than if the computer was polling the module to detect a
change in state.
The sequence is simpler to program (no timing loops).
By using trigger delay, the timing is accurate and repeatable because the
computer does not provide timing for the sequence.
The active downprogrammers in the module output can quickly discharge
the module's output capacitors and any capacitance in the DUT.

Implementation details

How the MPS implements the solution

All modules are set to listen for a backplane TTL Trigger.
When any module detects a change in status from CV to CC, it sends out a
backplane TTL Trigger.
When the + 5 V module receives the trigger, it immediately goes to 0 V.
When the + 15 V and -15 V modules receive the trigger, they wait the
trigger delay time and then go to 0 V.

(Note that any module can both generate the backplane TTL Trigger signal
and be triggered by that same signal.)

Overview of application

MPS features used

Advantages/benefits of the

MPS solution

14

Application 2.

Sequencing Multiple Modules to Power Down on Event

MPS set up Module in slot 0:

The module is connected to + 15 V on the DUT.
The initial voltage setting is 15 V.
The module monitors its status.
The module will generate a backplane TTL Trigger on CV-to-CC crossover.
The module listens for a backplane TTL Trigger.
The trigger delay is programmed to 15 ms.
Upon receipt of the trigger, the module waits the trigger delay time and
then goes to 0 V.

Module in slot 1:

The module is connected to supply -15 V to the DUT.
The initial voltage setting is 15 V.
The module monitors its status.
The module will generate a backplane TTL Trigger on CV-to-CC crossover.
The module listens for backplane TTL Trigger.
The trigger delay is programmed to 15 ms.
Upon receipt of the trigger, the module waits the trigger delay time and
then goes to 0 V.

Module in slot 2:

The module is connected to supply + 5 V to the DUT.
The initial voltage setting is 5 V.
The module monitors its status.
The module will generate a backplane TTL Trigger on CV-to-CC crossover.
The module listens for backplane TTL Trigger.
Upon receipt of the trigger, the module immediately goes to 0 V.

1. The modules could be set to generate SRQ when the last module
reaches 0 V. This could notify the computer that power has been removed
from the DUT.

2. The modules could be set to generate a DFI (Discrete Fault Indicator)
signal on the MPS rear panel on a change in status. This signal could be
used to shut down other power modules, to flash an alarm light, or to
sound a buzzer. This could also be routed to other instruments to signal
them to stop making measurements.

3. To get all three modules to remove power from the DUT at the same time,
simply eliminate the trigger delay on the ±15 V modules.

4. To provide a delay between the removal of the three bias voltages, you can
program a different trigger delay into each module.

Variations on this

implementation

15

Figure 2-1. Block Diagram of Application #2

Figure 2-2. Timing Diagram of Application #2

16

10 ! APPLICATION #2: SEQUENCING MULTIPLE MODULES TO POWER DOWN ON EVENT
20 ! PROGRAM: APP_2
30 !
40 ASSIGN @Slot0 TO 70500 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
50 ASSIGN @Slot1 TO 70501 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 01
60 ASSIGN @Slot2 TO 70502 ! SELECT CODE 7, MAINFRAME ADDRESS 05 SLOT 02
70 !
80 ! SET UP MODULE IN SLOT 0 AS +15 V BIAS SUPPLY ____________________
90 !
100 OUTPUT @Slot0;"*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
110 OUTPUT @Slot0;"CURR .5"
120 OUTPUT @Slot0;”VOLT 15" ! START AT 15 V
130 OUTPUT @Slot0;"VOLT:TRIGGERED 0" ! GO T0 0 V ON TRIGGER
140 OUTPUT @Slot0;"TRIGGER:SOURCE TTLTRG" ! TRIGGER SOURCE IS TTL TRIGGER
150 OUTPUT @Slot0;"TRIGGER:DELAY .015" ! 15 ms TRIGGER DELAY
160 OUTPUT @Slot0;"INITIATE" ! ENABLE RESPONSE TO TRIGGER
170 OUTPUT @Slot0;"OUTPUT:TTLTRG:SOURCE LINK" ! GENERATE A BACKPLANE TTL TRIGGER
180 OUTPUT @Slot0;"OUTPUT:TTLTRG:LINK 'CC'. ! WHEN A CV_TO_CC TRANSITION OCCURS
190 OUTPUT @Slot0;"OUTPUT:TTLTRG:STATE ON" ! ENABLE TTL TRIGGER DRIVE
200 OUTPUT @Slot0;"OUTPUT ON" ! ENABLE OUTPUT
210 !
220 ! SET UP MODULE IN SLOT 1 AS _15 V BIAS SUPPLY ____________________
230 !
240 OUTPUT @Slot1;"*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
250 OUTPUT @Slot,"CURR .5"
260 OUTPUT @Slot1;"VOLT 15" ! START AT 15 V
270 OUTPUT @lot1;"VOLT:TRIGGERED 0" ! GO TO 0 V ON TRIGGER
280 OUTPUT @Slot1;"TRIGGER:SOURCE TTLTRG” ! TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
240 OUTPUT @Slot1;"TRIGGER:DELAY .015" ! 15 ms TRIGGER DELAY
300 OUTPUT @Slot1;"INITIATE" ! ENABLE RESPONSE TO TRIGGER
310 OUTPUT @Slot1;"OUTPUT:TTLTRG:SOURCE LINK" ! GENERATE A BACKPLANE TTL TRIGGER
320 OUTPUT @Slot1;"OUTPUT:TTLTRG:LINK 'CC"' ! WHEN A CV_TO_CC TRANSITION OCCURS
330 OUTPUT @Slot1;"OUTPUT:TTLTRG:STATE ON” ! ENABLE TTL TRIGGER DRIVE
340 OUTPUT @Slot1;”OUTPUT ON" ! ENABLE OUTPUT
350 !
360 ! SET UP MODULE IN SLOT 2 AS +5 V BIAS SUPPLY _____________________
370 !
380 OUTPUT @Slot2;"*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
340 OUTPUT @Slot2;"CURR .5"
400 OUTPUT @Slot2;"VOLT 5" ! START AT 5 V
410 OUTPUT @Slot2;"VOLT:TRIGGERED 0" ! GO TO 0 V ON TRIGGER
420 OUTPUT @Slot2;"TRIGGER:SOURCE TTLTRGH ! TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
430 OUTPUT @Slot2;"INITIATE" ! ENABLE RESPONSE TO TTL TRIGGER
440 OUTPUT @Slot2;"OUTPUT:TTLTRG:SOURCE LINK” ! GENERATE A BACKPLANE TTL TRIGGER
450 OUTPUT @Slot2;"OUTPUT:TTLTRG:LINK 'CC"' ! WHEN A CV_TO_CC TRANSITION OCCURS
460 OUTPUT @Slot2;"OUTPUT:TTLTRG:STATE ON” ! ENABLE TTL TRIGGER DRIVE
470 OUTPUT @Slot2;”OUTPUT ON" ! ENABLE OUTPUT
480 !
490 ! THE POWER NODULES ARE NOW SET UP TO IMPLEMENT THE POWER DOWN ON EVENT.
500 ! ANY TIRE ANY MODULE GOES INTO CC, THE SEQUENCE WILL OCCUR.
510 !
520 END

Figure 2-3. HP BASIC Program Listing for Application #2

17

When control over the rate of voltage ramp up at turn-on of the power
module output is required, the desired shape can be approximated by
downloading and executing a series of voltage and dwell time points.

For this example, you need to program the power module to change its
output from 2 volts to 10 volts, slewing through the 8 volt transition in 0.5
seconds. This results in a turn-on ramp-up of 16 V per second.

The MPS can create this voltage versus time characteristic using Lists. The
desired characteristic (in this case, linear) is simulated using the 20
available voltage points. To determine the value of each point in the
transition, simply divide the change in voltage by 20. To determine the
dwell time of each voltage point, divide the total transition time by 19.
After the List has been executed, the module will continue to output the
final value (in this case, 10 volts) until the output has been reprogrammed
to another value. Note that the dwell-time of the last point is not part of
the transition time.

To determine the slowest ramp up (longest transition time) that can be
generated, you must consider how smooth you need the voltage versus
time characteristic to be. As the dwell time associated with each point gets
longer, the output voltage will become more like a "stair step" and less like
a linear transition. (See Figure 3-1)

To determine the fastest ramp up (shortest transition time) that can be
generated, you must consider the minimum dwell time specification (10
ms) and the maximum rise-time of specification the power module (20
ms). If you program 10 ms dwell times, the power module will not be able
to reach its output voltage before the next voltage point is output.
(See Figure 3-2)

20-point voltage List
Dwell time
Dwell-paced Lists

By using Lists, the module changes its output voltage automatically, so
that the computer is not devoted to reprogramming the output voltage.
The outputs can change faster when dwell paced than when the computer
must explicitly reprogram each change.
The sequence is simpler to program (no timing loops).
By using dwell times, the timing of each point is accurate and repeatable.
The computer does not provide timing for the sequence.
For negative-going ramps, the active downprogrammers in the module
output can quickly discharge the module's output capacitors and any
capacitance in the DUT when negative going ramps are required.

Overview of application

MPS features used

Advantages/benefits of the

MPS solution

18

Application 3.

Controlling Output Voltage Ramp Up at Turn On

Figure 3-1. Simulating a Slow Voltage Ramp

Figure 3-2. Simulating a Fast Voltage Ramp

19

How the MPS implements the sequence

The module is programmed to List mode.
The module will execute a dwell-paced List.
The 20 voltage points are downloaded to the module.
The 20 dwell times are downloaded to the module.
When the transition must occur, the module is triggered by the computer.
The module output ramps under its own control.

1. The module could be set to begin ramping in response to an external or
backplane TTL Trigger.

2. The module could be set to generate SRQ when it has finished its
transition. This would notify the computer that the voltage is at the proper
level.

3. The module could be set to generate an external trigger when it has
finished its transition. This trigger could be routed to other instruments as
a signal to start making measurements.

4. Multiple modules could be programmed to slew together in response to the
computer trigger command.

5. The module could be set to generate an external trigger for each point in
the transition. This trigger could be routed to other instruments as a signal
to take a measurement at various supply voltages. (See application #7)

6. Many voltage versus time characteristics can be generated by varying the
voltage values and the dwell times in the List.

Figure 3-3. Generating the Desired Voltage Ramp for Application #3

Implementation details

20

10 ! APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON
20 ! PROGRAM: APP 3
30 !
40 ASSIGN @Slot0 TO 70500 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
50 !
60 OPTION BASE 1
70 DIM V_step(20) ! ARRAY TO HOLD THE VOLTAGE RAMP STEPS
80 Vstart=2 ! START VOLTAGE FOR RAMP
90 Vstop=10 ! STOP VOLTAGE FOR RAMP
100 Runp_time=.5 ! SECONDS TO CHANGE FROM Vstart TO Vstop
110 Dwell=Ramp_time/19 ! IN SECONDS
120 !
130 ! SINCE THE OUTPUT STAYS AT THE LAST VOLTAGE POINT AFTER ITS DWELL TIME EXPIRES, THE DWELL TIME OF THE
140 ! LAST POINT IS NOT PART OF THE TRANSITION TIME. THEREFORE, DIVIDE THE TOTAL TIME BY 19 POINTS, NOT 20.
150 ! ALSO, YOU ONLY NEED TO DOWNLOAD 1 DWELL TIME. IF THE MODULE RECEIVES ONLY 1 DWELL TIME, IT ASSUMES
160 ! YOU WANT THE SAME DWELL TIME FOR EVERY POINT IN THE LIST.
170 !
180 FOR I=1 TO 20
190 V_step(I)=Vstart+(((Vstop-Vstart)/20)*1) ! CALCULATES VOLTAGE LIST POINTS
200 NEXT I
210 !
220 OUTPUT @Slot0;"*RST;*CLS;STATUS:PRESET” ! RESET AND CLEAR MODULE
230 OUTPUT @Slot0;”VOLT ";Vstart ! START RAMP AT Vstart
240 OUTPUT @Slot0;"CURR .1"
250 OUTPUT @Slot0;"OUTPUT ON" ! ENABLE OUTPUT
260 OUTPUT @Slot0;"VOLT:MODE LIST” ! SET TO GET VOLTAGE FROM LIST
270 OUTPUT @Slot0;”LIST:VOLT ";V step(*) ! DOWNLOAD VOLTAGE POINTS
280 OUTPUT @Slot0;"LIST:DWELL ";Dwell ! DOWNLOAD 1 DWELL TIME
290 OUTPUT @Slot0; "LIST :STEP AUTO" ! DWELL-PACED LIST
300 OUTPUT @Slot0;”INITIATE" ! ENABLE TRIGGER TO START LIST
310 !
320 ! BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
330 ! 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).
340 !
350 ! YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
360 ! CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
370 ! THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
380 !
390 REPEAT
400 OUTPUT @Slot0;"STATUS:OPERATION:CONDITION?"
410 ENTER @Slot0;Cordition_data
420 UNTIL BIT(Condition_data,5) ! TEST FOR BIT 5 = TRUE
430 !
440 ! SEND TRIGGER COMMAND TO START LIST AND GENERATE THE VOLTAGE RAMP
450 !
460 OUTPUT @Slot0;”TRIGGER:IMMEDIATE” ! THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE.
470 ! THEREFORE, IT DOES NOT NEED TO BE SELECTED AS A
TRIGGER SOURCE.
480 !
490 END

Figure 3-4. HP BASIC Program Listing for Application #3

21

To burn-in devices using thermal or mechanical cycling/stress, cyclical
time-varying voltage is provided by programming a set of voltage and dwell
time points that repetitively sequence over time.

For this example, the power module must provide the repetitive waveform
shown in Figure 4-1. This time-varying voltage will be applied to a hybrid
IC. By continually cycling the voltage from 0 to 7 volts over a 33 second
interval, the hybrid is given time to heat up and undergo thermal and
mechanical stress as the welds inside the hybrid expand and contract, and
then subsequently cool down.

Figure 4-1. Voltage Waveform for Application #4

In addition to generating the cyclical voltage, it is desirable to have the
power module notify the computer should the device fail and stop the
cycling. Since the module is monitoring test status, the computer is free to
perform other tests.

The MPS can address this application using dwell-paced repetitive Lists.
This application could be thought of as a simple power arbitrary waveform
generator. To get the desired time-varying voltage, you must be able to
describe the waveform in 20 discrete voltage points, with each point
ranging from 10 ms to 65 seconds. This range of dwell times determines
the range of frequencies (or time rate of change) of the voltage waveform
to be generated.

Once the waveform has been described, it is downloaded to the module.
Upon being triggered, it will repetitively generate the waveform without
computer intervention.

Overview of application

22

Application 4.

Providing Time-Varying Voltages

The module will also be set up to generate an SRQ and stop the voltage
cycling of the hybrid should fail. If the hybrid fails by shorting, the module
will go into CC. This change in status will cause the module to protect the
DUT by disabling the output, which will stop the test and generate an SRQ.
(Open circuit failures will not be detected. Since failures of this type are
less likely to have destructive consequences, detection is not required.)

20-point voltage List
Repetitive Lists
Dwell time
Dwell-paced Lists
Generate an SRQ on a change in internal status
Disable the output on a change in internal status
Stop the List on a change in internal status
Trigger on an HP-IB trigger command
Overcurrent protection
Active downprogramming

By using Lists, the module changes its output voltage automatically, so
that the computer is not devoted to reprogramming the output voltage.
The output can change faster when dwell paced than when the computer
must explicitly reprogram each change.
Overcurrent protection can disable the output before the DUT is damaged.
By letting each module monitor its status, the CC condition will be
responded to faster than if the computer was responsible for stopping the
test.
The sequence is simpler to program (no timing loops).
By using dwell times, the timing of each point is accurate and repeatable
because the computer does not provide timing for the sequence.
When the output is disabled, the active downprogrammers in the module
output can quickly discharge the module's output capacitors and any
capacitance in the DUT.

Implementation details

How the MPS implements the sequence

The module is programmed to List mode.
The module will execute a dwell-paced List.
The 3 voltage points are downloaded to the module.
The 3 dwell times are downloaded to the module.
To begin the cycling, the module is triggered by the computer.
The module continuously generates the voltage waveform.
The module continuously monitors its status.
If the module goes into CC, the overcurrent protection disables the output.
The module generates an SRQ when the overcurrent protection occurs.

MPS features used

Advantages/benefits of the

MPS solution

23

Module set up

Set voltage mode to List.
Download voltage List.
Download dwell times.
Set Lists to dwell paced.
Set Lists to infinitely repeat.
Enable status monitoring of overcurrent condition.
Enable overcurrent protection.
Enable SRQ generation on overcurrent protection occurrence.

1. The module could be set to begin generating the waveform in response to
an external or backplane TTL Trigger.

2. The module could be set to generate external triggers for each point in the
List. This trigger could be routed to other instruments to synchronize
external measurements to the change in voltage. (See application #7)
Using this technique, parametric measurements could be made on the
device during the thermal cycling.

3. Multiple modules could be programmed to cycle together in response to
the computer trigger command.

4. To determine how many times the hybrid was cycled before it failed, you
can use the SRQ (that was generated when the hybrid failed and the
module went into CC) to timestamp the failure. The elapsed time will give
the number of cycles executed.

Variations on this

implementation

24

10 ! APPLICATION #4: PROVIDING TIME-VARYING VOLTAGES
20 ! PROGRAM: APP_4
30 !
40 ASSIGN @Slot0 TO 70500 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
50 !
60 ! INITIALIZE THE MODULE
70 !
80 OUTPUT @Slot0;"*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
90 OUTPUT @Slot0;"VOLT 0" ! START TEST AT 0 V
100 OUTPUT @Slot0;"CURR .1" ! SET CURRENT LIMIT
110 OUTPUT @Slot0;"OUTPUT ON" ! ENABLE OUTPUT
120 !
130 ! SET UP OVERCURRENT PROTECTION (OCP) AND GENERATE SRQ ON OCP TRIP
140 !
150 OUTPUT @Slot0;"CURRENT:PROTECTION:STATE ON" ! ENABLE OCP
160 OUTPUT @Slot0;"OUTPUT:PROTECTION:DELAY 0" ! NO DELAY BEFORE PROTECTION OCCURS
170 OUTPUT @Slot0;"STATUS:QUESTIONABLE:ENABLE 2" ! ENABLE DETECTION OF OC CONDITION IN THE
180 ! QUESTIONABLE REGISTER, WHERE OC = BIT 1 = VALUE 2.
190 OUTPUT @Slot0;"STATUS:QUESTIONABLE:PTRANSITION 2" ! ENABLES DETECTION ON POSITIVE TRANSITION,

I.E., GOING INTO OC.
200 OUTPUT @Slot0;"*SRE 8" ! ENABLES THE SERVICE REQUEST REGISTER TO GENERATE AN
210 1 SRQ WHEN ANY EVENT IN THE QUESTIONABLE REGISTER IS
220 ! ASSERTED. THE QUESTIONABLE REGISTER = BIT 3 = VALUE 8.
230 !
240 ! SET UP THE VOLTAGE LIST
250 !
260 OUTPUT @Slot0;"VOLT:MODE LIST" ! SET TO GET VOLTAGE FROM LIST
270 OUTPUT @Slot0;"LIST:VOLT 5,7,0" ! DOWNLOAD VOLTAGE POINTS
280 OUTPUT @Slot0;"LIST:DWELL 1,2,30" ! DOWNLOAD DWELL TIMES
290 OUTPUT @Slot0;"LIST:STEP AUTO" ! DWELL-PACED LIST
300 OUTPUT @Slot0;"LIST:COUNT INF" ! CONTINUOUSLY REPEAT LIST (INF = INFINITE)
310 OUTPUT @Slot0;"INITIATE" ! ENABLE TRIGGER TO START LIST
320 !
330 !
340 ! BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
350 ! 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).
360 !
370 ! YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
380 ! CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
390 ! THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
400 !
410 REPEAT
420 OUTPUT @Slot0;"STATUS:OPERATION:CONDITION?"
430 ENTER @Slot0;Condition_data
440 UNTIL BIT(Condition_data,5) ! TEST FOR BIT 5 = TRUE
450 !
460 ! SEND HP-IB TRIGGER COMMAND TO START LIST
470 !
480 OUTPUT @Slot0;"TRIGGER:IMMEDIATE" ! THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE.
490 ! THEREFORE, IT DOES NOT NEED TO BE SELECTED AS A TRIGGER SOURCE.
500 !
510 END

Figure 4-2. HP BASIC Programming Listing for Application #4

26

25

To provide current limit protection which varies as a function of time,
multiple thresholds on current limit are required. Having multiple
thresholds can provide a high limit to protect the DUT during its power-up
in-rush with automatic switchover to a lower limit to protect the DUT
during its steady state operation.

For this example, the DUT is a printed circuit assembly. This assembly is
being tested prior to installation in the end product. The module provides
power to the assembly, which will undergo a functional test. The assembly
has capacitors on-board, and when power is applied, the in-rush current
approaches 4 A. After the capacitors charge, which takes about 500
milliseconds, the steady state current settles to 600 mA. See Figure 5-1.

The MPS can address this application using dwell-paced Lists. In this case,
the List will consist of a set of current limits and dwell times, because the
voltage will remain constant throughout the test.

Once power has been applied, the first current limit, which provides
protection to a shorted DUT while still allowing high current in-rush to
occur, will remain in effect for the dwell time. Then the current limit will
switch to its next setting in the List. The result is a current limit which
changes with time and provides protection as the DUT current
requirements drop off to their steady state value. When the dwell time
expires for the last current limit in the List, the current limit stays at this
value until reprogrammed. Thus, the actual value of the last dwell time is
not important. The last current List point would be the current limit for the
steady state operation during the test of the DUT. See Figure 5-2 for how
the MPS implements this protection.

Throughout List execution, overcurrent protection will be enabled. If at
any time the module goes into CC, the output will be disabled, the test
stopped, and the DUT protected.

20-point current List
Dwell time
Dwell-paced Lists
Disable the output on a change in internal status
Stop the List on a change in internal status
Change the voltage on trigger
Trigger on an HP-IB trigger command
Overcurrent protection
Active downprogramming

Overview of application

MPS features used

26

Application 5.

Providing Time-Varying Current Limiting

Figure 5-1. Typical DUT Current vs Time

Figure 5-2. Desired Current Limit vs Time

27

By using Lists, the module changes its current limit automatically, so that
the computer is not devoted to reprogramming the current limit.
The output can change faster when dwell paced than when the computer
must explicitly reprogram each change.
Overcurrent protection can disable the output before the DUT is damaged.
By letting the modules monitor status, the CC condition will be responded
to faster than if the computer was responsible for stopping the test.
The sequence is simpler to program (no timing loops).
By using dwell times, the timing of each point is accurate and repeatable
because the computer does not provide timing for the sequence.
When the output is disabled, the active downprogrammers in the module
output can quickly discharge the module's output capacitors and any
capacitance in the DUT.

Implementation details

How the MPS implements the sequence.

The module is programmed to current List mode.
The module will execute a dwell-paced current List.
The current limit List points are downloaded to the module.
The dwell times are downloaded to the module.
To begin powering the DUT, the module is triggered by the computer.
This one trigger causes the current List to begin executing and the voltage
to go to its programmed value.
The module steps through the current limit List.
The module continuously monitors its status.
If the modules goes into CC, the overcurrent protection disables the
output.

Module set up

Set the current mode to List.
Download current List. Download the dwell times.
Set the List to be dwell paced. Enable overcurrent protection.
The initial voltage setting is 0 V.
The module listens for the computer to send a trigger command.
Upon receipt of the trigger command, the module goes to 12 V.
Also upon receipt of the trigger command, the module begins executing its
current limit List.

1. The module could be set to begin applying power in response to an
external or backplane TTL Trigger.

2. Multiple modules could be programmed to cycle together in response to
the computer trigger command. Each module could have unique current
limits, voltage settings, and dwell times.

3. The module could be set to generate an SRQ if the overcurrent protection
disables the output.

Advantages/benefits of the

MPS solution

Variations on this

implementation

28

4. The module could be set to generate an external or backplane TTL Trigger
if the overcurrent protection disables the output.
5. The in-rush current can be controlled using the current limit settings of
the current List. Instead of setting the current limit slightly above 4 A, it
could be set at a much lower value. This would limit the in-rush current to
the value in the List. It would take longer to charge the capacitors on the
assembly, but the inrush condition would be controlled. In this variation,
the overcurrent protection could not be used, because you want the
module to be in CC.

10 ! APPLICATION #5: PROVIDING TIME-VARYING CURRENT LIMITING
20 ! PROGRAM: APP 5
30 !
40 DIM C_limit$[50],Dwell$[50]
50 !
60 C_limit$="4.1, 3.0, 2.0, 1.0, 0.7" ! CURRENT LIMIT DATA
70 Dwell$="0.2, 0.05, 0.1, 0.15, 0.01" ! DWELL TIME DATA
80 !
90 ASSIGN @Slot0 TO 70500 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
100 !
110 OUTPUT @Slot0;"*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
120 OUTPUT @Slot0;"VOLT 0" ! START TEST AT 0 V
130 OUTPUT @Slot0;"OUTPUT ON" ! ENABLE OUTPUT
140 OUTPUT @Slot0; "CURRENT :PROTECTION : STATE ON" ! ENABLE OCP
150 OUTPUT @Slot0;"OUTPUT:PROTECTION:DELAY 0" ! NO DELAY BEFORE PROTECTION OCCURS
160 OUTPUT @Slot0;"CURRENT:MODE LIST" ! SET TO GET CURRENT FROM LIST
170 OUTPUT @Slot0;"LIST:CURRENT ";C_limit$! DOWNLOAD CURRENT POINTS
180 OUTPUT @Slot0;"LIST:DWELL ";Dwell$! DOWDLOAD DWELL TIMES
190 OUTPUT @Slot0;"LIST:STEP AUTO" ! DWELL-PACED LIST
200 OUTPUT @Slot0;"VOLT:TRIGGERED 12" ! GO TO 12 V WHEN TRIGGERED
210 OUTPUT @Slot0;"INITIATE" ! ENABLE TRIGGER TO START LIST AND APPLY 12 V
220 !
230 ! BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
240 ! 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).
250 !
260 ! YOU COULD ELIMINATE THIS STEP By SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
270 ! CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
280 ! THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
290 !
300 REPEAT
310 OUTPUT @Slot0;''STATUS:OPERATION:CONDITION?”
320 ENTER @Slot0;Condition_data
330 UNTIL BIT(Condition_data,5) ! TEST FOR BIT 5 = TRUE
340 !
350 ! SEND HP-IB TRIGGER COMMAND TO START LIST AND APPLY 12 V
360 !
370 OUTPUT @Slot0;”TRIGGER:IMMEDIATE'' ! THIS IS AN IMMEDIATE TRIGGER, WHICH IS
380 ! ALWAYS ACTIVE. THEREFORE, IT DOES NOT NEED
390 END ! TO BE SELECTED AS A TRIGGER SOURCE.
Figure 5-3. HP BASIC Program Listing for Application #5

29

When performing bias supply margin testing, throughput can be maximized
by eliminating the command processing time associated with
reprogramming all outputs for each set of limit conditions. Instead,
multiple sets of bias limit conditions can be downloaded to the power
modules during test system initialization. During the testing, the computer
can use a single command to simultaneously signal all power modules to
step through each test condition.

In this example, the DUT requires + 5 V and + 12 V. The DUT is tested to
ensure proper operation at marginal supply voltages. The margin specified
is ± 5% of nominal voltage. At each of the combinations given below, the
computer first sets up the three modules and makes a measurement on the
DUT. The combinations to be tested are:

When conducting this test, the modules will need to be reprogrammed 21
times and seven measurements made. The command processing time
could slow down this test.

The MPS can be used to increase throughput. By downloading all of the
combinations into the three modules, each setting can be quickly stepped
through by triggering all modules to change to their next voltage setting
and then taking a measurement from the DUT. This permits testing
without command processing overhead.

20-point voltage List
Trigger-paced Lists
Trigger in/out from MPS mainframe backplane TTL Trigger
Trigger on an HP-IB trigger command

By using Lists, the module changes its voltage without delays due to
processing the command to change the output voltage.
By using triggers, all three outputs can be changed with one command.
The computer loop to change the settings and take a measurement is
simplified, because you do not have to explicitly reprogram each module
output. Instead, the loop becomes "Trigger" and "Measure".

Overview of application

Nominal 6 V Nominal + 12 V Nominal -12 V

4.75 V 12 V - 12 V

5 V 12 V - 12 V

5.25 V 12 V - 12 V

5V 11.4 V - 12 V

5V 12.6 V -12 V

5V 12V -11.4V

5 V 12 V - 12.6 V

MPS features used

Advantages/benefits of the

MPS solution

30

Application 6.

Output Sequencing Paced by the Computer

Implementation details

How the MPS implements the sequence

The following steps are performed for each point in the List:
The computer sends a trigger command to the first module.
The first module simultaneously sends a backplane TTL Trigger to the
other two modules and goes to its next List point.
The second module receives the backplane TTL Trigger and immediately
goes to its next List point.
The third module receives the backplane TTL Trigger, immediately goes to
its next List point.
The computer gets a measurement from the measurement instrument.

MPS set up Module in slot 0:

The module is connected to + 5 V on the DUT.
The initial voltage setting is 0 V.
Set the voltage mode to List.
Download the voltage List.
Set the List to be trigger paced.
The module listens for the computer to send a trigger command.
Upon receipt of the trigger command, the module outputs its next List
point.
Also upon receipt of the trigger command, the module generates a
backplane TTL Trigger.

Module in slot 1:

The module is connected to + 12 V on the DUT.
The initial voltage setting is 0 V.
Set the voltage mode to List.
Download the voltage List.
Set the List to be trigger paced.
The module listens for a backplane TTL Trigger.
Upon receipt of a trigger, the module goes to its next List point.

Module in slot 2:

The module is connected to -12 V on the DUT.
The initial voltage setting is 0 V.
Set the voltage mode to List.
Download the voltage List.
Set the List to be trigger paced.
The module listens for a backplane TTL Trigger.
Upon receipt of a trigger, the module goes to its next List point.

31

1. A current List could also have been executed by the module so that for
each voltage point, a corresponding current limit could be programmed.

2. Overcurrent protection could be enabled to protect a faulty DUT.
3. The module could generate an SRQ when it finishes changing voltage for

each point in the List based on the STC (Step Completed) status bit, which
indicates when the module has completed executing the next point in the
List. The SRQ could tell the computer to get a measurement from the
measurement instrument.

4. The module could be told to output its next List point in response to an
external or backplane TTL Trigger. (See next application.)

Figure 6-1. Block Diagram Application #6

Figure 6-2. Diagram of Application #6

Variations on this

implementation

32

10 ! APPLICATION #6: OUTPUT SEQUENCING PACED BY THE COMPUTER
20 ! PROGRAM: APP_6
30 !
40 DIM Plus_5v$[50],Plus_12v$[50],Minus_12v$[50]
50 !
60 Plus_5v$=“4.75, 5, 5.25, 5, 5, 5, 5" ! THESE ARE THE BIAS
70 Plus_12v$="12, 12, 12, 11.4, 12.6, 12, 12" ! SUPPLY LIMIT CONDITIONS
80 Minus 12v$="12, 12, 12, 12, 12, 11.4, 12.6" ! TO BE TESTED
90 !
100 Num_test_steps=7 ! NUMBER OF BIAS SUPPLY LIMIT COMBINATIONS
110 Dwell=.010 ! SECONDS OF DWELL TIME
120 !
130 ASSIGN @Slot0 TO 70500 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
140 ASSIGN @Slot1 TO 70501 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 01
150 ASSIGN @Slot2 TO 70502 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 02
160 !
170 ! SET UP MODULE IN SLOT 0 AS +5 V BIAS SUPPLY ---------------------
180 !
190 OUTPUT @Slot0;”*RST;*CLS;STATUS:PRESET” ! RESET AND CLEAR MODULE
200 OUTPUT @Slot0;"VOLT 0" ! START AT 0 V
210 OUTPUT @Slot0;"OUTPUT ON” ! ENABLE OUTPUT
220 OUTPUT @Slot0;"VOLTAGE:MODE LIST" ! SET TO GET VOLTAGE FROM LIST
230 OUTPUT @Slot0;"LIST:VOLTAGE ";Plus_5v$! DOWNLOAD VOLTAGE LIST POINTS
240 OUTPUT @Slot0;"LIST:DWELL";Dwell ! DOWNLOAD 1 DWELL TIME (ASSUMES SAME FOR ALL POINTS)
250 OUTPUT @Slot0;"LIST:STEP ONCE" ! EXECUTE 1 LIST POINT PER TRIGGER
260 OUTPUT @Slot0;"TRIGGER:SOURCE BUS" ! TRIGGER SOURCE IS HP-IB 'BUS'
270 OUTPUT @Slot0;"OUTPUT:TTLTRG:SOURCE BUS" ! GENERATE BACKPLANE TTL TRIGGER WHEN HP-IB 'BUS' TRIGGER
IS RECEIVED
280 OUTPUT @Slot0;"OUTPUT:TTLTRG:STATE ON" ! ENABLE TTL TRIGGER DRIVE
290 OUTPUT @Slot0;"INITIATE" ! ENABLE RESPONSE TO TRIGGER
300 !
310 ! SET UP MODULE IN SLOT 1 AS +12 V BIAS SUPPLY ----------------------
320 !
330 OUTPUT @Slot1;"*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
340 OUTPUT @Slot1;"VOLT 0" ! START AT 0 V
350 OUTPUT @Slot1;"OUTPUT ON" ! ENABLE OUTPUT
360 OUTPUT @Slot1;"VOLT:MODE LIST" ! SET TO GET VOLTAGE FROM LIST
370 OUTPUT @Slot1;"LIST:VOLTAGE ";Plus_12v$! DOWNLOAD VOLTAGE LIST POINTS
380 OUTPUT @Slot1;"LIST:DWELL”;Dwell ! DOWNLOAD 1 DWELL TIME (ASSUMES SAME FOR ALL POINTS)
390 OUTPUT @Slot1;"LIST:STEP ONCE" ! EXECUTE 1 LIST POINT PER TRIGGER
400 OUTPUT @Slot1;"TRIGGER:SOURCE TTLTRG" ! TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
410 OUTPUT @Slot1;"INITIATE" ! ENABLE RESPONSE TO TRIGGER
420 !
430 ! SET UP MODULE IN SLOT 2 AS -12 V BIAS SUPPLY ---------------------
440 !
450 OUTPUT aSlot2;"*RST;*CLS;STATUS:PRESET" ! RESET AND CLEAR MODULE
460 OUTPUT @Slot2;"VOLT 0" ! START AT 0 V
470 OUTPUT @Slot2;"OUTPUT ON" ! ENABLE OUTPUT
480 OUTPUT @Slot2;"VOLT:MODE LIST" ! SET TO GET VOLTAGE FROM LIST
490 OUTPUT @Slot2;"LIST:VOLTAGE ";Minus_12v$! DOWNLOAD VOLTAGE LIST POINTS
500 OUTPUT @Slot2;"LIST:DWELL”;Dwell ! DOWNLOAD 1 DWELL TIME (ASSUMES SAME FOR ALL POINTS)
510 OUTPUT @Slot2;"LIST:STEP ONCE" ! EXECUTE 1 LIST POINT PER TRIGGER
520 OUTPUT @Slot2;”TRIGGER:SOURCE TTLTRG" ! TRIGGER SOURCE IS BACKPLANE TTL TRIGGER
530 OUTPUT @Slot2;”INITIATE" ! ENABLE RESPONSE TO TTL TRIGGER
540 !

33

550 ! BEFORE TRIGGERING THE MODULES, DETERMINE IF THE MODULES ARE READY BY CHECKING FOR
560 ! 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER). IF THE LAST MODULE PROGRAMMED
570 ! IS READY THEN SO ARE THE OTHERS, SO JUST CHECK SLOT 2.
580 !
590 ! YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
600 ! CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
610 ! THAT TAKE TIME WILL GIVE THE MODULES A CHANCE TO COMPLETE PROCESSING.
620 !
630 REPEAT
640 OUTPUT @Slot2;"STATUS:OPERATION:CONDITION? "
650 ENTER @Slot2;Condition_data
660 UNTIL BIT(Condition_data,5) ! TEST FOR BIT 5 = TRUE
670 !
680 ! GENERATE A TRIGGER AND MAKE A MEASUREMENT FOR EACH TEST CONDITION
690 !
700 FOR Loop_count=1 TO Num_test_steps
710 OUTPUT @Slot0;"*TRG" ! SEND HP-IB BUS TRIGGER
720 GOSUB Get_measurement
730 NEXT Loop_count
740 !
750 STOP
760 !
770 Get_measurement: !
780 !
790 ! THIS IS JUST TO SHOW YOU WHERE YOU WOULD ADD CODE TO GET DATA FROM THE MEASUREMENT INSTRUMENT
800 ! THE MEASUREMENT MUST TAKE LONGER THAN THE PROGRAMMED DWELL TIME OR YOU WILL MISS TRIGGERS.
810 !
820 WAIT .1
830 !
840 RETURN
850 !
860 END

Figure 6-3. HP BASIC Program Listing for Application #6

34

When characterizing devices, the DUT's performance is measured over a
range of power supply voltages. This test can be performed without
computer intervention by using hardware signals from the measurement
instrument to cause the power module to sequence to the next voltage in a
preprogrammed List. By buffering these readings in the measurement
instrument, the entire test can be executed without computer involvement.
For characterizations that require long measurement times, the computer
is free to do other tasks. For characterizations that must execute at
hardware speeds, the computer is not involved and will not slow down the
test loop.

In this example, the power module must apply 8 to 14 volts (in 13 0.5-volt
increments) to an automotive engine sensor. The module varies the bias
voltage to the engine sensor and the sensor's output is measured to
characterize its performance over the range of possible “battery voltages”.
The sensor output is measured by a DMM that has an internal buffer and
stores each reading.

By combining Lists and trigger capabilities, the MPS can be used to
address this application. The module can be programmed to use its
triggering capabilities to the fullest extent. Each time the module executes
the next step in its List and changes voltage, the module will generate an
external trigger. The external trigger will cause the DMM, equipped with
an external trigger input, to take and store a reading. The DMM, also
equipped with a “Measurement Complete” output, sends its output trigger
signal to the module to tell the module to go to its next List point.
Effectively, the module and the DMM “handshake”, so that the two
function at hardware speeds without computer intervention.

When the test is complete, either device can signal the computer to get the
data from the DMM. For the purpose of this example, the module will
generate an SRQ when the last List point has been executed. This is
indicated by the OPC (Operation Complete) bit in the status register.

Another detail that needs attention is timing. The DUT may require some
settling time before the DMM is told to take a reading. The module's dwell
time can be used to do this. The STC (Step Complete) status signal
indicates when the point has been executed and its dwell time has expired.
The dwell time is programmed to be the engine sensor's settling time. The
external trigger is generated when STC is asserted. Thus, the DMM will not
be triggered until the dwell time has expired and the sensor's output has
settled.

Overview of application

35

Application 7.

Output Sequencing without Computer Intervention

This type of self-paced test execution is useful in two situations. When the
test must execute very fast, there is no time for the computer to be
involved in each iteration of the test loop. Therefore, the test must execute
without computer intervention. The second situation is when the test is
very long. For example, if the measurement instrument took 1 minute to
make each measurement, the test would take 13 minutes to execute. The
computer is not used efficiently if it is idle while waiting for each
measurement loop, so it would be best to have the computer executing
another task. Without self-pacing, you would need to develop interrupt
driven software that stops every 1 minute to take a reading. By letting the
module and the DMM run on their own, code development is much simpler
and computer resources are used more efficiently.

20-point voltage List
Dwell time
Trigger-paced Lists
Generate an SRQ on a change in internal status
Generate a trigger on a change in internal status
Trigger in/out from MPS mainframe backplane TTL Trigger
Trigger on an HP-IB trigger command

The entire test executes without computer involvement, the command
processing time is eliminated from the test loop.
The entire test executes without computer involvement, so the computer
can perform other tasks while the test executes.
Software development is simplified; you do not need to write a test loop
because the module and the DMM are running on their own.
By using dwell times, the trigger out signal can be sent at the correct time,
which permits the DUT to settle before a reading is taken.

Implementation details

How the MPS implements the sequence

The module listens for the computer to send a trigger command.
Upon receipt of the trigger command, the module outputs its first List
point.
After the dwell time expires, the STC is asserted and the module generates
an external trigger.
The DMM receives the external trigger, takes and stores a reading.
The DMM generates a “Measurement Complete” output signal when it's
done.
The module receives the DMM output signal as an external trigger in.
Also upon receipt of the trigger in, the module outputs its next List point.
The process repeats for each List point.
After the last List point has executed, the module generates SRQ, telling
the computer the test has completed.

MPS features used

Advantages/benefits of the

MPS solution

36

MPS set up Set the voltage mode to List.

Download the voltage List.
Download the dwell time List.
Set the List to be trigger paced.
Set the trigger source to external trigger. (Note that the computer trigger
command “TRIGGER:IMMEDIATE” is always active, even if the external
trigger is the selected source.)
Set the module to generate a backplane TTL Trigger on STC. This
backplane TTL Trigger drives external trigger out. Set the module to
generate SRQ on OPC.

1. A current List could also have been executed by the module so that for
each voltage point, a corresponding current limit could be programmed.

2. Overcurrent protection could be enabled to protect a faulty engine sensor.
3. If the DMM does not have an internal buffer, the computer could take a

reading on each iteration of the test loop (see previous application).

Variations on this

implementation

37

Figure 7-1. Block Diagram of Application #7

Figure 7-2. Timing Diagram of Application #7

38

10 ! APPLICATION #7: OUTPUT SEQUENCING WITHOUT COMPUTER INTERVENTION
20 ! PROGRAM: APP_7
30 !
40 ASSIGN @Slot0 TO 70500 ! SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
50 !
60 DIM Vlist$[80]
70 Vlist$=“8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13, 13.5, 14” ! VOLTAGE LIST POINTS
80 !
90 OUTPUT @Slot0;”*RST;*CLS;STATUS:PRESET” ! RESET AND CLEAR MODULE
100 OUTPUT @Slot0;”VOLT 0” ! START AT 0 V
110 OUTPUT @Slot0;”CURR 1” ! SET CURRENT LIMIT
120 OUTPUT @Slot0;”OUTPUT ON” ! ENABLE OUTPUT
130 OUTPUT @Slot0;”VOLT:MODE LIST” ! SET TO GET VOLTAGE FROM LIST
140 OUTPUT @Slot0;”LIST:VOLT “;Vlist$! DOWNLOAD VOLTAGE LIST POINTS
150 OUTPUT @Slot0;”LIST:DWELL .050” ! DOWNLOAD 1 DWELL POINT (ASSUMES SAME FOR ALL POINTS)
160 ! USE A 50 ms SETTLING TIME AS THE DWELL TIME
170 OUTPUT @Slot0;”LIST:STEP ONCE” ! EXECUTE 1 POINT PER TRIGGER
180 !
190 OUTPUT @Slot0;n*ESE 1” ! ENABLES DETECTION OF OPC IN THE STANDARD EVENT REGISTER.
200 ! OPC = BIT 0 = VALUE 1 OF THE STANDARD EVENT REGISTER.
210 OUTPUT @Slot0;”*SRE 32” ! ENABLES THE SERVICE REQUEST REGISTER TO GENERATE AN SRQ
WHEN
220 ! ANY EVENT IN THE STANDARD EVENT REGISTER IS ASSERTED.
230 ! THE STANDARD EVENT REGISTER = BIT 5 = VALUE 32.
240 !
250 OUTPUT @Slot0;”OUTPUT:TTLTRG:STATE ON” ! ENABLE BACKPLANE TTL TRIGGER DRIVE
260 OUTPUT @Slot0;”OUTPUT:TTLTRG:SOURCE LINK” ! WHEN THE MODULE INDICATES STC (STEP COMPLETED),
270 OUTPUT @Slot0;”OUTPUT:TTLTRG:LINK 'STC”' ! GENERATE A BACKPLANE TTL TRIGGER
280 OUTPUT @Slot0;”TRIGGER:SOURCE EXTERNAL” ! USE EXTERNAL TRIGGER IN BNC AS TRIGGER SOURCE
290 OUTPUT @Slot0;”INITIATE” ! ENABLE RESPONSE TO TRIGGER
300 OUTPUT @Slot0;”*OPC” ! TELLS MODULE TO ASSERT OPC (OPERATION COMPLETE)
310 ! WHEN IT COMPLETES THE LIST. OPC GENERATES SRQ.
320 !
330 ON INTR 7 GOSUB Srq_handler ! ENABLE SRQ INTERRUPT AND
340 ENABLE INTR 7;2 ! IDENTIFY HANDLER SUBROUTINE
350 !
360 ! BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS ARE READY BY CHECKING FOR
370 ! 'WAITING FOR TRIGGER' (BIT 5 OF THE OPERATION STATUS REGISTER).
380 !
390 ! YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
400 ! CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
410 ! THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
420 !
430 REPEAT
440 OUTPUT @Slot0; “STATUS :OPERATION :CONDITION?”
450 ENTER @Slot0;Condition_data
460 UNTIL BIT(Condition_data,5) ! TEST FOR BIT 5 = TRUE
470 !
480 ! BEGIN THE SELF-PACED TEST LOOP BY TRIGGERING THE MODULE TO START THE LIST
440 !
500 OUTPUT @Slot0;”TRIGGER:IMMEDIATE” ! THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS ACTIVE.
510 ! IT DOES NOT NEED TO BE SELECTED AS TRIGGER SOURCE.
520 !
530 GOTO 530 ! IDLE IN LOOP WAITING FOR SRQ OR GO DO OTHER TASKS
540 !
550 Srq_handler: !
560 !
570 ! ADD LINES HERE TO READ THE DATA BUFFER FROM THE DMM
580 !
590 END
Figure 7-3. HP BASIC Program Listing of Application #7

39

This appendix contains program listings translated into the following
DOS-compatible languages and HP-IB interfaces:

GWBASIC and the HP 61062/82990/82335A HP-IB Command Library for
MS-DOS

GWBASIC and the National Instruments GPIB-PC Interface Card

Microsoft C and the HP 61062/82990/82335A HP-IB Command Library for
MS-DOS

Microsoft C and the National Instruments GPIB-PC Interface Card

Each program is translated from the HP BASIC listing found in application
#3. This example program was chosen as representative of all application
programs because it shows how to:

Configure the interface card
Address the power module
Write strings to the power module
Write real arrays to the power module
Receive real numbers from the power module

The six other application programs all use a subset of the above functions.

40

Appendix

1 ´ MERGE "SETUP.BAS" AS DESCRIBED IN YOUR HP-IB COMMAND LIBRARY MANUAL
2 ´
1000 ´ APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON
1010 ´ FOR GWBASIC AND THE HP 61062/82990/82335A HP-IB COMMAND LIBRARY
1020 ´ PROGRAM: HP3.BAS
1030 ´
1040 OPTION BASE 1
1050 INTERFACE = 7 ´SELECT CODE OF THE HP-IB CARD
1060 SLOT0 = 705001! ´SELECT CODE 7, MAINFRAME ADDRESS 05, SLOT 00
1070 CR.LF$ = CHR$(13) + CHR$(10) ' ´ CARRIAGE RETURN + LINE FEED = END OF LINE
TERMINATION
1080 DIM VSTEP(20) ´ ARRAY TO HOLD THE VOLTAGE RAMP STEPS
1090 NUM.POINTS = 20 ´ NUMBER OF POINTS IN THE VOLTAGE RAMP ARRAY
1100 VSTART = 2 ´ START VOLTAGE FOR RAMP
1110 VSTOP = 10 ´ STOP VOLTAGE FOR RAMP
1120 RAMPTIME = .5 ´ TIME IN SECONDS TO CHANGE FROM VSTART TO VSTOP
1130 DWELL = RAMPTIME / 19 ´ DWELL TIME FOR EACH POINT
1140 ´
1150 ´ SINCE THE OUTPUT STAYS AT THE LAST VOLTAGE POINT AFTER ITS DWELL TIME EXPIRES, THE DWELL TIME OF THE
1160 ´ LAST POINT IS NOT PART OF THE TRANSITION TIME. THEREFORE, DIVIDE THE TOTAL TIME BY 19 POINTS, NOT 20.
1170 ´ YOU WANT THE SAME DWELL TIME FOR EVERY POINT IN THE LIST, SO YOU NEED TO DOWNLOAD ONLY 1 DWELL
TIME.
1180 ´
1190 FOR I=1 TO 20
1200 VSTEP(I) = VSTART + (((VSTOP - VSTART) / 20) * I) ´ CALCULATES VOLTAGE LIST POINTS
1210 NEXT I
1220 ´
1230 ´ NOTE REGARDING HP-IB READ/WRITE TERMINATIONS:
1240 ´
1250 ´ THE DEFAULT MODE OF THE INTERFACE CARD IS THAT EOI IS
ENABLED AND THE READ/WRITES TERMINATE
1260 ´ ON CARRIAGE RETURN/LINE FEED. THE MODULE
TERMINATES ON EITHER EOI OR LINE FEED, SO THE
1270 ´ DEFAULT SETTINGS OF THE CARD ARE SUFFICIENT.
1280 ´
1290 CMD$ = "*RST;*CLS;STATUS:PRESET" ´ RESET AND CLEAR MODULE
1300 L = LEN(CMD$)
1310 CALL IOOUTPUTS(SLOT0, CMD$, L)
1320 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1330 ´
1340 CMD$ = "VOLT " + STR$(VSTART) ´ START RAMP AT VSTART. USE NUMBER TO STRING
1350 L = LEN(CMD$) ´ CONVERSION TO SEND REAL NUMBERS OVER THE BUS
1360 CALL IOOUTPUTS(SLOT0, CMD$, L) ´ AS PART OF THE COMMAND STRING.
1370 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1380 ´
1390 CMD$ = "CURR .1"
1400 L = LEN(CMD$)
1410 CALL IOOUTPUTS(SLOT0, CMD$, L)
1420 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1430 ´
1440 CMD$ = "OUTPUT ON" ´ ENABLE OUTPUT
1450 L = LEN(CMD$)
1460 CALL IOOUTPUTS(SLOT0, CMD$, L)
1470 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1480 ´
1490 CMD$ = "VOLT:HODE LIST" ´ SET TO GET VOLTAGE FROM LIST
1500 L = LEN(CMD$)
1510 CALL IOOUTPUTS(SLOT0, CMD$, L)
1520 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1530 ´
1540 ´ SENDING THE VOLTAGE DATA POINTS REQUIRES TWO STEPS USING THE HP-IB COMMAND LIBRARY. THE
INSTRUCTION CONTAINS BOTH
1550 ´ STRING DATA AND A REAL ARRAY. FIRST, SEND THE STRING DATA COMMAND HEADER "LIST:VOLT" TO THE MODULE
USING IOOUTPUTS.
1560 ´ THEN, SEND THE REAL ARRAY USING IOOUTPUTA. HOWEVER, YOU MUST INHIBIT THE EOI AND END-OF-LINE
TERMINATOR AFTER THE
1570 ´ IOOUTPUTS COMMAND OR THE MODULE WILL STOP TAKING DATA. THEN RE-ENABLE THEM TO TERMINATE THE
IOOUTPUTA.
1580 ´

41

1590 EOI.STATE = 0 ´ TURN OFF EOI
1600 CALL IOEOI(INTERFACE, EOI.STATE)
1610 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1620 ´
1630 END.OF.LINE = 0 ´ TURN OFF END-OF-LINE TERMINATION
41

1640 CALL IOEOL(INTERFACE, CR.LF$, END.OF.LINE)
1650 IF PCIB.ERR <>0 THEN ERROR PCIB.BASERR
1660 ´
1670 CMD$ = "LIST:VOLT "
1680 L = LEN(CMD$)
1690 CALL IOOUTPUTS(SLOT0, CMD$, L) ´ SEND THE VOLTAGE HEADER (STRING) ---
1700 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1710 ´
1720 EOI.STATE = 1 ´ TURN ON EOI
1730 CALL IOEOI(INTERFACE, EOI.STATE)
1740 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1750 ´
1760 END.OF.LINE = LEN (CR.LF$) ´ TURN ON END-OF-LINE TERMINATION
1770 CALL IOEOL(INTERFACE, CR.LFS , END.OF.LINE)
1780 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1790 ´
1800 CALL IOOUTPUTA(SLOT0, VSTEP(1), NUM.POINTS) ´ DOWNLOAD THE VOLTAGE POINTS (ARRAY)
1810 IF PCIB.ERR <> 0 THEN ERROR PCIB.BASERR
1820 ´
1830 CMD$ = “LIST:DWELL " + STR$(DWELL) ´ DOWNLOAD 1 DWELL TIME. USE NUMBER TO STRING
1840 L = LEN(CMD$) ´ CONVERSION TO SEND REAL NUMBERS OVER THE BUS
1850 CALL IOOUTPUTS(SLOT0, CMD$, L) ´ AS PART OF THE COMMAND STRING.
1860 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1870 ´
1880 CMD$ = "LIST:STEP AUTO" ´ DWELL-PACED LIST
1890 L = LEN(CMD$)
1900 CALL IOOUTPUTS(SLOT0, CMD$, L)
1910 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1920 ´
1930 CMD$ = "INITIATE" ´ ENABLE TRIGGER TO START LIST
1940 L = LEN(CMD$)
1950 CALL IOOUTPUTS(SLOT0, CMD$, L)
1960 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
1970 ´
1980 ´ BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
1990 ´ ´WAITING FOR TRIGGER´ (BIT 5 OF THE OPERATION STATUS REGISTER).
2000 ´
2010 ´ YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
2020 ´ CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
2030 ´ THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
2040 ´
2050 CONDITION . DATA = 0
2060 ´
2070 WHILE ((CONDITION.DATA AND 32) <> 32) ' CONTINUE TO LOOP UNTIL BIT 5 (VALUE 32) = TRUE
2080 CMD$ = “STATUS:OPERATION:CONDITION?”
2090 L = LEN(CMD$)
2100 CALL IOOUTPUTS(SLOT0, CMD$, L)
2110 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
2120 CALL IOENTER(SLOT0, CONDITION.DATA)
2130 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
2140 WEND
2150 ´
2160 ´ SEND TRIGGER COMMAND TO START LIST AND GENERATE THE VOLTAGE RAMP
2170 ´
2180 CMD$ = "TRIGGER:IMMEDIATE" ´ THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS
2190 L s LEN(CMD$) ´ ACTIVE. THEREFORE, IT DOES NOT NEED TO BE
2200 CALL IOOUTPUTS(SLOT0, CMD$, L) ´ SELECTED AS A TRIGGER SOURCE.
2210 IF PCIB.ERR<>0 THEN ERROR PCIB.BASERR
2220 ´
2230 END
42

42

1 ´ MERGE "DECL.BAS" AS INSTRUCTED IN YOUR NATIONAL INSTRUMENTS GPIB-PC MANUAL
2 ´
1000 ´ APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON
1010 ´ FOR GWBASIC AND THE NATIONAL INSTRUMENTS GPIB-PC INTERFACE CARD
1020 ´ PROGRAM: N3.BAS
1030 ´
1040 ´ CONFIGURE THE GPIB.COM HANDLER FOR THE FOLLOWING:
1050 ´
1060 ´ EOI ENABLED FOR BOTH READ AND WRITE
1070 ´ DISABLE AUTO SERIAL POLL
1080 ´
1090 INSTRUMENT.NAME$ = "SLOT0"
1100 CALL IBFIND(INSTRUMENT.NAME$, SLOT0%)
1110 IF SLOT0% < 0 THEN PRINT "COULDN’T FIND MODULE": STOP
1120 ´
1130 OPTION BASE 1
1140 VSTEP$ = "" ´ STRING TO HOLD THE VOLTAGE RAMP STEPS
1150 VSTART = 2 ´ START VOLTAGE FOR RAMP
1160 VSTOP = 10 ´ STOP VOLTAGE FOR RAMP
1170 RAMPTIME = .5 ´ TIME IN SECONDS TO CHANGE FROM VSTART TO VSTOP
1180 DWELL = RAMPTIME / 19 ´ DWELL TIME FOR EACH POINT
1190 ´
1200 ´ SINCE THE OUTPUT STAYS AT THE LAST VOLTAGE POINT AFTER ITS DWELL TIME EXPIRES, THE DWELL TIME OF THE
1210 ´ LAST POINT IS NOT PART OF THE TRANSITION TIME. THEREFORE, DIVIDE THE TOTAL TIME BY 19 POINTS, NOT 20.
1220 ´ YOU WANT THE SAME DWELL TIME FOR EVERY POINT IN THE LIST, SO YOU NEED TO DOWNLOAD ONLY 1 DWELL
TIME.
1230 ´
1240 ´ SINCE THE NATIONAL INSTRUMENTS GPIB-PC WORKS WITH STRINGS, THE RAMP DATA MUST BE CONSOLIDATED
INTO A SINGLE
1250 ´ STRING WHICH CONTAINS ALL THE POINTS, SEPARATED BY COMMAS
1260 ´
1270 FOR I=1 TO 20 ´ MAKES THE STRING EQUIVALENTS OF THE
1280 VSTEP$ = VSTEP$ + STR$(VSTART + (((VSTOP - VSTART) / 20) * 1)) ´ VOLTAGE POINTS AND

CONCATENATES THEM ONLY
1290 IF I <> 20 THEN VSTEP$=VSTEP$+"," ´ FOR THE FIRST 19 POINTS, EACH FOLLOWED
1300 NEXT I ´ BY A COMMA. THE LAST POINT IS NOT
1310 ´´ FOLLOWED BY A COMMA.
1320 ´
1330 CMD$ = "*RST;*CLS;STATUS:PRESET" ´ RESET AND CLEAR MODULE
1340 CALL IBWRT(SLOT0%, CMD$)
1350 IF IBSTA% < 0 THEN GOTO 1960
1360 ´
1370 CMD$ = "VOLT " + STR$(VSTART) ´ START RAMP AT VSTART. USE NUMBER TO STRING
1380 CALL IBWRT(SLOT0%, CMD$) ´ CONVERSION TO SEND REAL NUMBERS OVER THE BUS
1390 IF IBSTA$ < 0 THEN GOTO 1960 ´ AS PART OF THE COMMAND STRING.
1400 ´
1410 CMD$ = "CURR .1"
1420 CALL IBWRT(SLOT0%, CMD$)
1430 IF IBSTA% < 0 THEN GOTO 1960
1440 ´
1450 CMD$ = "OUTPUT ON" ´ ENABLE OUTPUT
1460 CALL IBWRT(SLOT0%, CMD$)
1470 IF IBSTA% < 0 THEN GOTO 1960
1480 ´
1490 CMD$ = "VOLT:MODE LIST" ´ SET TO GET VOLTAGE FROM LIST
1500 CALL IBWRT(SLOT0%, CMD$)
1510 IF IBSTA% < 0 THEN GOTO 1960
1520 ´
1530 CMD$ = "LIST:VOLT " + VSTEP$ ´ DOWNLOAD VOLTAGE LIST POINTS
1540 CALL IBWRT(SLOT0%, CMD$)
1550 IF IBSTA% < 0 THEN GOTO 1960
1560 ´
1570 CMD$ = "LIST:DWELL " + STR$(DWELL) ´ DOWNLOAD 1 DWELL TIME. USE NUMBER TO STRING
1580 CALL IBWRT(SLOT0%, CMD$) ´ CONVERSION TO SEND REAL NUMBERS OVER THE BUS
1590 IF IBSTA% < 0 THEN GOTO 1960 ´ AS PART OF THE COMMAND STRING.
1600 ´
1610 CMD$ = "LIST:STEP AUTO" ´ DWELL-PACED LIST
1620 CALL IBWRT(SLOT0%, CMD$)
1630 IF IBSTA% < 0 THEN GOTO 1960

43

1640 ´
1650 CMD$ = "INITIATE" ´ ENABLE TRIGGER TO START LIST
1660 CALL IBWRT(SLOT0%, CMD$)
1670 IF IBSTA% < 0 THEN GOTO 1960
1680 ´
1690 ´ BEFORE TRIGGERING THE MODULE, DETERMINE IF IT IS READY BY CHECKING FOR
1700 ´ ´WAITING FOR TRIGGER´ (BIT 5 OF THE OPERATION STATUS REGISTER).
1710 ´
1720 ´ YOU COULD ELIMINATE THIS STEP BY SIMPLY INSERTING A PAUSE IN THE PROGRAM. HOWEVER, BY
1730 ´ CHECKING THE INSTRUMENT STATUS, YOU CAN AVOID TIMING PROBLEMS. ALSO, ANY OTHER OPERATIONS
1740 ´ THAT TAKE TIME WILL GIVE THE MODULE A CHANCE TO COMPLETE PROCESSING.
1750 ´
1760 CONDITION.DATA$ = SPACE$(20) ´ RESERVE SPACE FOR READING IN STRING
1770 ´
1780 WHILE ((VAL(CONDITION.DATA$) AND 32) <> 32) ´ CONTINUE TO LOOP UNTIL BIT 5 (VALUE 32) = TRUE
1790 CMD$ = "STATUS:OPERATION:CONDITION?"
1800 CALL IBWRT(SLOT0%, CMD$)
1810 IF IBSTA% < 0 THEN GOTO 1960
1820 CALL IBRD(SLOT0%, CONDITION.DATA$)
1830 IF IBSTA% < 0 THEN GOTO 1960
1840 WEND
1850 ´
1860 ´ SEND TRIGGER COMMAND TO START LIST AND GENERATE THE VOLTAGE RAMP
1870 ´
1880 CMD$ = "TRIGGER:IMMEDIATE" ´ THIS IS AN IMMEDIATE TRIGGER, WHICH IS ALWAYS
1890 CALL IBWRT(SLOT0%, CMD$) ´ ACTIVE THEREFORE, IT DOES NOT NEED TO BE
1900 IF IBSTA% < 0 THEN GOTO 1960 ´ SELECTED AS A TRIGGER SOURCE.
1910 ´
1920 STOP
1930 ´
1940 ´ GENERAL ERROR HANDLER
1950 ´
1960 PRINT "GPIB function call error: "
1970 PRINT "IBSTA%="; IBSTA%, "IBERR% = "; IBERR% ,"IBCNT% = ";IBCNT%
1980 ´
1990 END

44

/* APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON
FOR MICROSOFT C AND THE HP 61062/82990/82335A HP-IB COMMAND LIBRARY FOR MS-DOS
PROGRAM: HP3. C */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "chpib.h"
#include "cfunc.h"
#define INTERFACE 7L /* Select code 7 for the HP-IB interface card. */
#define SLOT0 70500L /* Select code 7, mainframe address 05, slot 00. */
#define WTG 32 /* Waiting for Trigger (WTG) = bit 5 = value 32. */
#define NUM_PTS 20 /* 20 points in the voltage List. */
int error;
mains()
{

char *cmd; /* Used to hold command strings sent to the module. */
char cmd_buff[255]; /* Used to hold command strings during string manipulations.

*/
static char cr_lf[13] = { 13, 10, 0 }; /* Carriage return+line feed = end of line. */
int i /* Loop counter. */
float condition_data; /* Used to hold data from read back of status conditions. */
float vstart = 2.0; /* Start voltage for the ramp. */
float vstop = 10.0; /* Stop voltage for the ramp. */
float vstep[NUM_PTS]; /* Used to hold voltage List points for the ramp. */
float ramptime = 0.5; /* Transition time (in seconds) for the ramp. */
float dwell; /* Dwell time (in seconds) for each ramp step. */
dwell = ramptime / 19.0 /* Since the output stays at the last voltage point after its dwell

time expires, the dwell time of the last point is not part of the
transition time. Therefore, divide the total time by 19 points,
not 20. You want the same dwell time for every point in the List,
so only download 1 dwell time. */

for (i = 1; i <= NUM_PTS; i++) /* Calculate the voltage List points */
vstep[i] = vstart + (((vstop - vstart) / NUM_PTS) * i);
error = ioreset(lNTERFACE); /* To get the interface to its defaults. */
error handler(error, "Reacting the interface");
error = iotimeout(lNTERFACE, (double)2.0); /* Enables timeout of 2 seconds. */
error_handler(error, "Setting the timeout");

/* Note regarding HP-IB read/write terminations:
The default of the interface card is that EOI is enabled and the read/writes terminate on carriage
return/line feed. The module terminates on either EOI or line feed, so the default settings of the card
are sufficient. */
cmd = "*RST;*CLS;STATUS:PRESET"; /* Reset and clear module. */
error = iooutputs(SLOT0, cmd, strlen(cmd));
error handler(error, cmd);
sprintf(cmd_buff , "VOLT %f", vstart); /* Start ramp at vstart. Use number to string */
error = iooutputs(SLOT0, cmd_buff, strlen(cmd_buff)); /* conversion to send real numbers over the */

error_handler(error, cmd_buff); /* bus as part of the command string. */
cmd = "CURR .1";
error = iooutputs(SLOT0, cmd, strlen(cmd));

error_handler(error, cmd);
cmd = "OUTPUT ON"; /* Enable output */
error = iooutputs(SLOT0, cmd, strlen(cmd));

error_handler(error, cmd);
cmd = "VOLT:MODE LIST"; /* Set to get voltage from List */
error = iooutputs(SLOT0, cmd, strlen(cmd));
error_handler(error, cmd);

45

/* Sending voltage data points requires two steps using the HP-IB Command Library. The instruction
contains both string data and a real array. First, send the string data command header "LIST:VOLT " to
the module using iooutputs. Then, send the real array using iooutputa. However, you must inhibit the EOI
and End-of-Line terminator after the iooutputs or the module will stop taking data. Then, re-enable them
to terminate the iooutputa. */
error = ioeoi(lNTERFACE, 0); /* Turn off EOI */

error_handler/error, "Disabling EOI");
error_ioeol(lNTERFACE, "", 0), /* Turn off End-of-Line termination */

error_handler(error, "Disabling EOL"),
cmd = "LIST:VOLT "; /* First send the voltage header (string) --- */
error = iooutputs(SLOT0, cmd, strlen(cmd));

error_handler(error, cmd);
error = ioeoi(lNTERFACE, 1); /* Turn on EOI */

error_handler(error, "Enabling EOI");
error = ioeol(lNTERFACE, cr_lf, strlen(cr_lf)); /* Turn on End-of-Line termination */

error_handler(error, "Enabling EOL");
error = iooutputa(SLOT0, &vstep[1], NUM_PTS); /* Download voltage points (array), starting */

error_handler(error, "Voltage List Array"); /* with the element 1, not 0.
sprintf(cmd buff, "LIST:DWELL %f", dwell); /* Download 1 dwell time. Use number to */
error = iooutputs(SLOT0, cmd_buff, strlen(cmd_buff)); /* string conversion to send the real*/

error_handler(error, cmd_buff); /* number over the bus as part of the */
/* command string. */

cmd = "LIST:STEP AUTO”; /* Dwell-paced List */
error = iooutputs(SLOT0, cmd, strlen(cmd));

error_handler(error, cmd);
cmd = "INITIATE"; /* Enable trigger to start List */
error = iooutputs(SLOT0, cmd, strlen(cmd));

error_handler(error, cmd);
/* Before triggering the module, determine if it is ready by checking for
´Waiting for Trigger´ (bit 5 of the Operation Status Register).
You could eliminate this step by simply inserting a pause in the program. However, by
checking the instrument status, you can avoid timing problems. Also, any other operations
that take time will give the module a chance to complete processing. */
do {

cmd = "STATUS:OPERATION:CONDITION?";
error = iooutputs(SLOT0, cmd, strlen(cmd));

error_handler(error, cmd);
error = ioenter(SLOT0, &condition data); /* You must convert float to integer */
error_handler(error, "Read back of status"); /* to do an integer bit test. */
} while (((int)condition_data && WTG) == 0) ; /* Loop until bit 5 (value 32) is true. */

/* Send trigger command to start List and generate the voltage ramp. */
cmd = "TRIGGER:IMMEDIATE"; /* This is an immediate trigger, which is always */
error = iooutputs(SLOT0, cmd, strlen(cmd)); /* active. Therefore, it does not need to be */

error_handler(error, cmd); /* selected as a trigger source. */
}
error handler(error,bad_string) /* This is a generalized error checking routine.*/
int error;
char *bad_string;
{

if (error != D) {
printf("HP-IB error while sending or receiving ´%s´.\n", bad_string);

printf("Error #: %d -- %s\n", error, errstr(error));
}

}

46

/* APPLICATION #3: CONTROLLING VOLTAGE RAMP UP AT TURN ON
FOR MICROSOFT C AND THE NATIONAL INSTRUMENTS GPIB-PC INTERFACE CARD
PROGRAM: N3.C
Configure the GPIB.CCM handler for the following: EOI enabled for both read and write

Disable auto serial poll */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "decl.h"
#define ERR (1<<15) /* Error detected as bit 15 of ibsta. */
#define NUM_PTS 20 /* The number of points in the voltage List. */
#define MAX_LEN 255 /* Maximum length of a string = 255 characters. */
#define SMALL_STRING 15 /* When you need a small string of 15 characters. */
#define WTG 32 /* Waiting for Trigger (WTG) = bit 5 = value 32 */
int slot0; /* Device number of module in slot 0. slot0 is configured in GPIB.COM as

GPIB address 5, secondary address 96. */
main()
{

char *cmd; /* Used to hold command strings sent to the module. */
char cmd_buff[MAX_LEN]; /* Used to hold co_and strings during string manipulations.

*/
char vpoint[SMALL_STRING]; /* Used to hold the string equivalent of one voltage ramp step.

*/
char vlist[MAX LEN]; /* Used to hold the entire voltage List command header and points.

*/
char condition_data[SMALL_STRING]; /* Reserve space for reading back status conditions. */
int i; /* Loop counter. */
float vstart = 2.0; /* Start voltage for the ramp. */
float vstop = 10.0; /* Stop voltage for the ramp. */
float ramptime = 0.5; /* Transition time for the ramp. */
float dwell; /* Dwell time for each ramp step. */
dwell = ramptime / 19.0; /* Since the output stays at the last voltage point after its dwell

dwell expires, the dwell time of the last point is not part of the
transition time. Therefore, divide the total time by 19 points, not 20.
You want the same dwell time for every point in the List, so only
download 1 dwell time. */

if ((slot0 = ibfind("SLOT0")) < 0) /* Assign unique identifier to the device slot0 and store in
*/

finderr(); /* variable slot0. Error = negative value returned. */
cmd = "*RST;*CLS;STATUS:PRESET"; /* Reset and clear module. */
ibwrt(slot0, cmd, strlen(cad));
if (ibsta & ERR)

error(cmd);
sprintf(cmd_buff, "VOLT %f", vstart); /* Start ramp at vstart. Use number to string conversion to send

*/
/* real numbers over the bus as part of the command string. */

ibwrt(slot0, cmd_buff, strlen(cmd buff));
if (ibsta & ERR)

error(cmd_buff);
cmd = "CURR .1";
iburt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)
error(cmd);
cmd = "OUTPUT ON"; /* Enable output */
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)
error(cmd);
cmd = "VOLT:MODE LIST"; /* Set to get voltage from List */
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)

error(cmd);
strcpy(vlist, "LIST:VOLT "); /* Start with the command header for the voltage List. */

47

for (i = 1; i < NUM_PTS; i++) { /* The loop calculates the string */
sprintf(vpoint, " %f, ", vstart+(((vstop - vstart) / NUM_PTS) * I)); /* equivalents of the voltage List */
strcat(vlist, vpoint); /* points and concatenates them for */

} /* only the first 19 because there */
/* should not be comma after the */

sprintf(vpoint , "%f" , vstop); /* last point. Do the last point */
strcat(vlist, vpoint); /* separately with no comma. */
iburt(slot0, vlist, strlen(vlist)); /* Download voltage List points */
if (ibsta & ERR)

error(viist);
sprintf(cmd_buff, "LIST:DUELL %f", dwell); /* Download 1 dwell time. Use number to */
ibwrt(slot0, cmd_buff, strlen(cmd_buff)); /* string conversion to send the real*/
if (ibsta & ERR) /* number over the bus as part of the */

error(cmd_buff); /* command string. */
cmd = "LIST:STEP AUTO"; /* Dwell-paced List */
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)

error(cmd);
cmd = "INITIATE"; /* Enable trigger to start List */
ibwrt(slot0, cmd, strlen(cmd));
if (ibsta & ERR)

error(cmd);
/* Before triggering the module, determine if it is ready by checking for

´waiting for Trigger´ (bit 5 of the Operation Status Register).
You could eliminate this step by simply inserting a pause in the program. However, by
checking the instrument status, you can avoid timing problems. Also, any other operations
that take time will give the nodule a chance to complete processing. */

do {
cmd = ~STATUS:OPERATION:CONDITION? ";
iburt(slot0, cmd, strlen(cmd));

if (ibsta & ERR)
error(cmd);

ibrd(slot0, condition_data, SMALL_STRING); /* Allow to read SHALL_STRING bytes, which is more */
if (ibsta & ERR) /* than enough. Note that first byte will be a + sign, */

error(condition_data); /* so you must convert the string to float, then to int, */
/* to do an integer bit test. */

} while (((int)(atof(condition_data)) && WTG) == 0); /* Loop until WTG = bit 5 (value 32) is true. */
/* Send trigger command to start List and generate the voltage ramp. */
cmd = "TRIGGER:IMMEDIATE"; /* This is an immediate trigger, which is always */
iburt(slot0, cmd, strlen(cmd)); /* active. Therefore, it does not need to be */
if (ibsta & ERR) /* selected as a trigger source. */
error(cmd);
}
finderr() /* Indicates that ibfind failed */
{
printf(.lbfind error: Does device name given match configuration name?\n");
}
error(bad_string) /* This is a generalized error checking routine. */
char *bad_string;
{
printf("GPIB error while sending or receiving ´%s´.\n´´, bad_string);
printf("GPIB status : ibsta = 0x%x, iberr = 0x%x, ibcnt = 0x%x\n", ibsta, iberr, ibcnt);
}

48

For more information about
Hewlett-Packard Test and Measurement
products, applications, services, and for a
current sales office listing, visit our web
site, http://www.hp.com/go/tmdir. You can
also contact one of the following centers
and ask for a test and measurement sales
representative.

United States:

Hewlett-Packard Company
Test and Measurement Call Center
P.O. Box 4026
Englewood, CO 80155-4026
1 800 452 4844

Canada:

Hewlett-Packard Canada Ltd.
5150 Spectrum Way
Mississauga, Ontario
L4W 5G1
(905) 206 4725

Europe:

Hewlett-Packard
European Marketing Centre
P.O. Box 999
1180 AZ Amstelveen
The Netherlands
(31 20) 547 9900

Japan:

Hewlett-Packard Japan Ltd.
Measurement Assistance Center
9-1, Takakura-Cho, Hachioji-Shi,
Tokyo 192, Japan
Tel: (81-426) 56-7832
Fax: (81-426) 56-7840

Latin America:

Hewlett-Packard
Latin American Region Headquarters
5200 Blue Lagoon Drive
9th Floor
Miami, Florida 33126
U.S.A.
(305) 267 4245/4220

Australia/New Zealand:

Hewlett-Packard Australia Ltd.
31-41 Joseph Street
Blackburn, Victoria 3130
Australia
1 800 629 485

Asia Pacific:

Hewlett-Packard Asia Pacific Ltd
17-21/F Shell Tower, Times Square,
1 Matheson Street, Causeway Bay,
Hong Kong
Tel: (852) 2599 7777
Fax: (852) 2506 9285

50

Data subject to change
Copyright © 1991
Hewlett-Packard Company
Printed in U.S.A. April, 16, 2001
5988-2800EN

	1. Sequencing Multiple Modules during Power Up
	2. Sequencing Multiple Modules to Power down on Event
	3. Controlling Output Voltage Ramp Up at Turn On
	4. Providing Time-Varying Voltages
	5. Providing Time-Varying Current Limiting
	6. Output Sequencing Paced by the Computer
	7. Output Sequencing Without Computer Intervention

